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Abstract 
 
A format specification for the Jmol voxel (JVXL) file format is proposed. The purpose of the 
JVXL file format is to provide a mechanism for the efficient delivery of molecular surface data 
(orbitals, electron density plots, electrostatic potential maps, etc.) from a web server to a client 
page in a compact manner. It was designed to be used specifically with the open-source Jmol 
molecular viewing and analysis applet (http://jmol.sourceforge.net), but the format has general 
utility anywhere a Gaussian CUBE file might be employed. Whereas typical CUBE files are on 
the order of 1-10 Mb in size, the derived JVXL files are 400-1000 times smaller, on the order of 
5-10Kb, allowing for a far more efficient use of bandwidth. The Jmol applet can read and write 
the JVXL file format, and currently it is the only application that can be used to create JVXL 
files.  
 
Background 
 
Computed molecular orbitals and electron density data are typically stored in Gaussian CUBE 
file format. [refs]  These files, even for small molecules, tend to be inconveniently large in the 
context of the web – on the order of 1-10 Mb even for relatively small molecules such as 
acrolein1 and benzene2. The core data section of a CUBE file consists of a list of numerical 
values, each representing the value of some particular molecular quantity at a specific x,y,z 
position within a molecular space. The number of data points involved depends upon the 
resolution of the grid and the size of the space. It is not uncommon for CUBE files to hold from 
10,000 to 500,000 data points, each requiring 13 bytes of storage space. CUBE files may contain 
any number of such lists. The size of cube files has proven a formidable deterrent to the real-time 
display of three-dimensional models of molecular surfaces on the web.  
 
The JVXL Solution 
 
Whereas the CUBE file contains the complete data set associated with a molecular parameter, 
typical use of CUBE file data is to display only a two-dimensional surface – the 95% probability 
surface for a molecular orbital, or the electrostatic potential of a molecule mapped onto an 
electron density surface. It is this characteristic use of the CUBE file that makes the JVXL 
format of great utility, for the JVXL file contains all the information needed to depict a finite, 
predetermined number of surfaces derived from the data stored in one or more CUBE files. This 
information turns out to be representable in far fewer bytes than the complete data set. The trade-
off is that JVXL files do not contain the entire data set – they cannot be used to regenerate 
CUBE files, and they cannot be used to display any more surfaces than the designer has loaded 
them with in the first place. Nonetheless, since the typical use of CUBE files is to present one or 
possibly a small number of surface representations, this is not in general a problem.  
 



General JVXL File Format 
 
The JVXL file consists of two sections, a header section, and a data section, consisting of one or 
more surface descriptions. The header section is identical to the CUBE file header section, 
though freer in format. (Indeed, Jmol reads JVXL files with the same reader it uses for CUBE 
files in terms of reading atom coordinates.)  The header section consists of the following subsets: 
 
 

 
TABLE 1. JVXL (CUBE) FILE HEADER SECTION 

 
Lines 1 and 2: 
comments 

  Title Card Required potential=scf 
 Electrostatic potential from Total SCF Density 

Line 3: a negative 
number (-N) 
representing the 
number of atoms 
followed by the origin 
of the “voxel space”,  
(x,y,z). Units are 
Bohrs. N must be 
negative; it cannot be 
zero. 

   -5   -8.140940   -8.140940   -8.643459 
 
   -N        x          y           z 

Lines 4: the number of 
data points along the 
“X” coordinate (NX), 
as defined by the 
vector (x,y,z). 
 

   50    0.333333    0.000000    0.000000 
 
   NX        x          y           z 

Line 5: same for Y    50    0.000000    0.333333    0.000000  
Line 6: same for Z    55    0.000000    0.000000    0.333333  
Lines (6+1) – (6+N): 
Atomic number in 
integer and real format 
along with Cartesian 
coordinates of each of 
the N atoms. There 
must be at least one 
atom. 

    6    6.000000    0.000000    0.000000   -2.1307 07 
    1    1.000000    0.000000    1.932284   -2.7753 80 
    1    1.000000    1.673407   -0.966142   -2.7753 80 
    1    1.000000   -1.673407   -0.966142   -2.7753 80 
   17   17.000000    0.000000    0.000000    1.2417 87 
 

Line 7 + N: 
A negative number  
(-NS)  indicating the 
number of surface 
specifications, 
followed by four 
encoding numbers 
(EB, ER, CB, CR) 
described below, and 
any additional text, 
possibly indicating the 
file format version  

-1  35 90 35 35 Jmol voxel format version 0.9b 
 
-NS EB ER CB CR 



It is not important that all atoms in a molecular system be represented here. The only significant 
difference between the JVXL and CUBE headers is that for the JVXL file at least one atom must 
be indicated, because a negative number for the number of atoms in a cube file indicates that the 
“7+N” header line will be present. The negative number on that 7+N line distinguishes this file 
from a Gaussian CUBE file, where a positive number indicates the number of data set lists that 
follow.  
 
In a CUBE file what now follows is an (NX x NY x NZ)-long list of numbers. In a JXVL file, 
what follows is a data section, consisting of (NS) surface descriptions. The four numbers EB, 
ER, CB, and CR indicate how edge and color data were encoded into ASCII character format. 
Currently, these numbers are fixed by the Jmol software and are not variable. 
 
 

 
TABLE 2. JVXL FILE SURFACE SPECIFICATION 

 
Variable number of blank 
lines or comments 

# comments begin with  a # sign; blank lines are ignored 
 
# any number of such lines are allowed  
 

Surface description line: 
the cutoff used for the 
computation of the surface 
(CO, for information 
only), the number of bytes 
of grid point data (NP), 
the number of bytes of 
edge data (NE), and a flag 
(NC) indicating whether 
colors data are present 
(NC=NE) or not (NC=-1) 
anything else on this line 
is informational only  

0.02 6457 8076 -1 compressionRatio=462.06357 
 CO   NP   NE  NC 

One or more lines of  
integer surface voxel 
bitmap data (described 
below) 
 

  115922 2 6333 4 91 6 90 7 88 8 88 8 89 6 91 . . .  

One or more lines of 
ASCII-encoded  edge 
fraction data (described 
below) 

3_+I6B3qPV4LVSwC{/K'_+G]fcUy6Il<3; . . .  

One or more lines of 
ASCII-encoded color 
mapping data (described 
below) 

7777889989:;;::<==:<=###$####$$%22223333###$. . .  

 
 



JVXL Surface Data 

To understand what is present in the three surface data fields, one must understand the essentials 
of the isosurface method. In this method, the space surrounding a surface is considered to be a 
set of points laid out in a rectangular or parallelepiped grid. An isosurface is defined as a surface 
through these points where a given parameter has a constant value (Figure 1).  

 
 
Figure 1. An isosurface surrounded by a 5 x 2 x 3 grid of data points. The key point is that much 
of the data points are unnecessary.  
 
The first thing to understand is that the only significant information we require are the 
approximate positions where the surface cuts the lines between the data points. It will be these 
intersection points that are then turned into a series of triangles for surface rendering. Thus, no 
information in volumes V11, V21, V14, or  V24 are required. In fact, what we need to do is focus 
on the edges. We need only consider the edges where one end is on one side of the surface and 
the other end is on the other side – edges cut by the surface. If we can identify which edges these 
are and where along each edge the surface cuts, we have all we need.  
 
The first set of surface data maps out which data points are inside and which are outside the 
surface. We simply count along in a systematic way. Using the for loop: 
 
      for (int x = voxelCountX; --x >= 0;) { 
        for (int y = voxelCountY; --y >= 0;) { 
          for (int z = voxelCountZ; --z >= 0;) { 
 
We run through all the “voxels” and determine whether the value at each is closer to 0 than a 
predetermined cutoff value (“outside”) or further from 0 (“inside”). We simply list the number of 
voxels found sequentially on each side: 115922  outside, 2 inside, 6333 outside, 4 inside… 
forming a relatively compact yet readable surface voxel bitmap. 
 
 
 



Edge Fraction Data 
 
The surface voxel bitmap data is enough information to be able to reconstruct which edges are 
the “critical” edges. Having done that, we go back through the voxels using the marching cube 
algorithm,3 this time running through each critical edge and estimating the position of the 
intersection of the surface with the edge. The edges are numbered and gone through sequentially 
from highest numbered to lowest (11 to 0, Figure 2) using a clever method that never checks any 
edge twice.  

 
 

Figure 2. Edge numbering. 
 
 
Only edges that have one end inside and one end outside are recorded. Based on the two values 
for the property at each end of the edge and the known cutoff value, a fraction is determined by 
linear interpolation: 
 
      fraction = (cutoff - valueA) / (valueB - valueA); 
 
It is this set of critical-edge fractions, then, that is encoded in the form of the edge fraction data. 
Encoding is carried out simply by determining the ASCII character that is that fraction of the 
way from the edge base character (EB, 35, ‘#’) to an end character (125, ‘}’) along a range of 
ASCII values (ER, 90). The only hitch in this scheme is that the backslash character, ‘\’, 92, is in 
this range. To ensure that backslash is not encoded, because it often has special meaning in 
strings in many programming languages, we encode backslash as an exclamation point (‘!’, 33). 
The only other character that might give problems is double quote, but it is outside this range 
(ASCII 34).  
 
This, then, is all that is needed to reconstruct the critical cube data for a single isosurface.  
 
Color Mapping Data 
 
Color-mapped isosurfaces are constructed in exactly the same way, but in this case, each surface 
point – defined by the crossing of an edge by the surface – is assigned a numerical value based 
on some other criterion, typically data from another CUBE file, but also possibly charge data or 
other data easily determined from the atomic positions. Coloring is based on a particular scheme 
or “pallete” which simply requires one more “fractional” number – the fraction of the distance 
from “red” to “blue”. This is encoded as before; Jmol uses a 35-color “roygbiv” rainbow for its 
rendering, so we encode as before, this time with a color base (CB) of 35 and a color range (CR) 
of 35 as well. 
 
 



 
 
Solvent-Accessible Surfaces 
 
It should also be possible to quite simply construct isosurfaces related to solvent accessibility. In 
the case of solvent-accessible surfaces, the surface would be generated by a network of points 
that lie within the voxels. These points would be identified by other algorithms, each 
representing the solvent sphere in a different location. Once these points are determined, the 
vertex values would simply be assigned a value based on their distance from that particular 
solvent center. Voxels further than the solvent radius from the solvent center would be “inside” 
the surface; voxels nearer to the solvent center than its radius would be “outside”. Provided that 
point density is high enough, a continuous set of voxels will be generated, and any missing 
voxels could, in principle, be interpolated from these. 
 
 
Results and Compression Ratios 
 
Compression ratios on the order of 400-600 are typical. This, of course, leaves out any 
possibility of real-time generation of additional surfaces; for that, the CUBE file is necessary. 
But for general use – depicting molecular orbitals and simple mapped surfaces –  JVXL files 
should suffice. Shown in Figure 3 are several comparisons. 4  
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Figure 3. Top: electron density isosurface; middle: electrostatic potential isosurface; bottom: 
electrostatic potential mapped onto the electron density isosurface. CUBE file (left, 3.7 Mb), and 
JVXL file (right, 6 Kb top and middle; 7 Kb bottom).  
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