The Jmol Voxel (JVXL) File Format

Robert M. Hanson, Department of Chemistry, St. @laflege, Northfield, Minnesota, USA
55057 ,hansonr@stolaf.ednttp://www.stolaf.edu/people/hansonr
May 25, 2006

Abstract

A format specification for the Jmol voxel (JVXL)diformat is proposed. The purpose of the
JVXL file format is to provide a mechanism for thicient delivery of molecular surface data
(orbitals, electron density plots, electrostatitepdial maps, etc.) from a web server to a client
page in a compact manner. It was designed to lespeifically with the open-source Jmol
molecular viewing and analysis applettp://imol.sourceforge.ngtbut the format has general
utility anywhere a Gaussian CUBE file might be eoyeld. Whereas typical CUBE files are on
the order of 1-10 Mb in size, the derived JVXL dilare 400-1000 times smaller, on the order of
5-10Kb, allowing for a far more efficient use ofnolvidth. The Jmol applet can read and write
the JVXL file format, and currently it is the ordypplication that can be used to create JVXL
files.

Background

Computed molecular orbitals and electron density dee typically stored in Gaussian CUBE
file format. [refs] These files, even for small iecules, tend to be inconveniently large in the
context of the web — on the order of 1-10 Mb ewarnrélatively small molecules such as
acroleirt and benzerfe The core data section of a CUBE file consista bt of numerical

values, each representing the value of some pkatimolecular quantity at a specific x,y,z
position within a molecular space. The number ¢ geints involved depends upon the
resolution of the grid and the size of the spacs.not uncommon for CUBE files to hold from
10,000 to 500,000 data points, each requiring 18sgf storage space. CUBE files may contain
any number of such lists. The size of cube files pr@ven a formidable deterrent to the real-time
display of three-dimensional models of moleculafazes on the web.

The JVXL Solution

Whereas the CUBE file contains the complete datassociated with a molecular parameter,
typical use of CUBE file data is to display onlw&-dimensionaturface — the 95% probability
surface for a molecular orbital, or the electrastpbtential of a molecule mapped onto an
electron density surface. It is this characterigtie of the CUBE file that makes the JVXL
format of great utility, for the JVXL file contairedl the information needed to depict a finite,
predetermined number of surfadesived from the data stored in one or more CUBE filessThi
information turns out to be representable in fareiebytes than the complete data set. The trade-
off is that JVXL files do not contain the entiretaaet — they cannot be used to regenerate
CUBE files, and they cannot be used to displayranye surfaces than the designer has loaded
them with in the first place. Nonetheless, sineetiipical use of CUBE files is to present one or
possibly a small number of surface representatibinsjs not in general a problem.

General JVXL File For mat

The JVXL file consists of two sectionsheader section, and data section, consisting of one or
moresurface descriptions. The header section is identical to the CUBEH#ader section,

though freer in format. (Indeed, Jmol reads JVXedfiwith the same reader it uses for CUBE
files in terms of reading atom coordinates.) Thader section consists of the following subsets:

TABLE 1. JVXL (CUBE) FILE HEADER SECTION

Lines 1 and 2: Title Card Required potential=scf
comments Electrostatic potential from Total SCF Density
Line 3: anegative -5 -8.140940 -8.140940 -8.643459

number (-N)

representing the Noox y z

number of atoms
followed by the origin
of the “voxel space”,
(x,y,2). Units are
Bohrs.N must be
negative; it cannot be
Zexo.

Lines 4: the number of 50 0.333333 0.000000 0.000000
data points along the

“X” coordinate (NX), NX X y z

as defined by the

vector (X,Y,2).

Line 5: same for Y 50 0.000000 0.333333 0.000000

Line 6: same for Z 55 0.000000 0.000000 0.333333

Lines (6+1) = (6+N): | 7 000 0.000000 1992284 57153 80
Atomic number in 1 1.000000 1.673407 -0.966142 -2.7753 80
integer and real format | 500000 -1.673407 -0.966142 -2.7753 80
along with Cartesian 17 17.000000 0.000000 0.000000 1.2417 87
coordinates of each of

the N atomsThere

must be at least one

atom.

Line 7 + N: -1 3590 35 35 Jmol voxel format version 0.9b

A negative number
(-NS) indicating the
number of surface
specifications,
followed by four
encoding numbers
(EB, ER, CB, CR)
described below, and
any additional text,
possibly indicating the
file format version

-NSEB ERCB CR

It is not important that all atoms in a moleculgstem be represented here. The only significant
difference between the JVXL and CUBE headers isftrahe JVXL file at least one atom must
be indicated, because a negative number for thdauof atoms in a cube file indicates that the
“7+N” header line will be present. The negative m@mon that 7+N line distinguishes this file
from a Gaussian CUBE file, whergoasitive number indicates the number of data set lists that
follow.

In a CUBE file what now follows is an (NX x NY x NZong list of numbers. In a JXVL file,
what follows is a data section, consisting of (d&jface descriptions. The four numbers EB,
ER, CB, and CR indicate how edge and color dat@ wecoded into ASCII character format.
Currently, these numbers are fixed by the Imolsoft and are not variable.

TABLE 2. JVXL FILE SURFACE SPECIFICATION

Variable number of blank| # comments begin with a # sign; blank lines ar®igd
lines or comments
any number of such lines are allowed

Surface description line: | 0.02 6457 8076 -1 compressionRatio=462.06357

the cutoff used for the CO NP NE NC
computation of the surface
(CO, for information
only), the number of bytes
of grid point data (NP),
the number of bytes of
edge data (NE), and a fla
(NC) indicating whether
colors data are present
(NC=NE) or not (NC=-1)
anything else on this line
is informational only

U7

[(®]

One or more lines of 115922 26333491690788888889691...

integersurface voxel
bitmap data (described
below)

One or more lines of 3_+16B3gPV4LVSWC{/K'_+G]fcUy6lI<3; . ..
ASCIll-encodededge
fraction data (described
below)

One or more lines of TT77889989:;; i <==<=###SH#HH#S$%22223333###$. . .
ASCIl-encodedolor
mapping data (described
below)

JVXL Surface Data

To understand what is present in the three sudatzfields, one must understand the essentials
of theisosurface method. In this method, the space surroundingfaseiis considered to be a

set of points laid out in a rectangular or parafpgbed grid. An isosurface is defined as a surface
through these points where a given parameter basstant value (Figure 1).

Figure 1. An isosurface surrounded by a 5 x 2 x 3 gridatadpoints. The key point is that much
of the data points are unnecessary.

The first thing to understand is that the only gigant information we require are the
approximate positions where the surface cuts ties|between the data points. It will be these
intersection points that are then turned into &seaf triangles for surface rendering. Thus, no
information in volumes W, Va1, V14, OF Vo4 are required. In fact, what we need to do is focus
on theedges. We need only consider the edges where one endaos® side of the surface and
the other end is on the other side — edges cultdgurface. If we can identify which edges these
are and where along each edge the surface cutsaweeall we need.

The first set of surface data maps out which datatp are inside and which are outside the
surface. We simply count along in a systematic Wsjng the for loop:

for (int x = voxelCountX; --x >= 0;) {
for (int y = voxelCountY; --y >= 0;) {
for (int z = voxelCountZ; --z >=0;) {

We run through all the “voxels” and determine wieetthe value at each is closer to 0 than a
predetermined cutoff value (“outside”) or furtheorh O (“inside”). We simply list the number of
voxels found sequentially on each sitle5922 outside2 inside,6333 outside4 inside...
forming a relatively compact yet readableface voxel bitmap.

Edge Fraction Data

The surface voxel bitmap data is enough informattiobe able to reconstruct which edges are
the “critical” edges. Having done that, we go b#wulough the voxels using timearching cube
algorithm? this time running through each critical edge astiheating the position of the
intersection of the surface with the edge. The sdge numbered and gone through sequentially
from highest numbered to lowest (11 to O, Figurasthg a clever method that never checks any
edge twice.

11 10

Figure 2. Edge numbering.

Only edges that have one end inside and one esdlewdre recorded. Based on the two values
for the property at each end of the edge and tbevkrcutoff value, a fraction is determined by
linear interpolation:

fraction = (cutoff - valueA) / (valueB - vah);

It is this set of critical-edge fractions, therattis encoded in the form of tledge fraction data.
Encoding is carried out simply by determining the@l character that is that fraction of the
way from the edge base character (EB, 35, ‘#')ted character (125, ‘}') along a range of
ASCIl values (ER, 90). The only hitch in this scheeim that the backslash character, ‘\', 92, is in
this range. To ensure that backslash is not en¢di®ause it often has special meaning in
strings in many programming languages, we encodksbash as an exclamation point (*!", 33).
The only other character that might give problesndduble quote, but it is outside this range
(ASCII 34).

This, then, is all that is needed to reconstruetdfitical cube data for a single isosurface.
Color Mapping Data

Color-mapped isosurfaces are constructed in extwlgame way, but in this case, each surface
point — defined by the crossing of an edge by théase — is assigned a numerical value based
on someother criterion, typically data from another CUBE fileyttalso possibly charge data or
other data easily determined from the atomic passti Coloring is based on a particular scheme
or “pallete” which simply requires one more “framtal” number — the fraction of the distance
from “red” to “blue”. This is encoded as before;almses a 35-color “roygbiv” rainbow for its
rendering, so we encode as before, this time witblar base (CB) of 35 and a color range (CR)
of 35 as well.

Solvent-Accessible Surfaces

It should also be possible to quite simply congtrsmsurfaces related to solvent accessibility. In
the case of solvent-accessible surfaces, the suwfaald be generated by a network of points
that lie within the voxels. These points would deritified by other algorithms, each
representing the solvent sphere in a differenttionaOnce these points are determined, the
vertex values would simply be assigned a valuedasdheir distance from that particular
solvent center. Voxels further than the solventusarom the solvent center would be “inside”
the surface; voxels nearer to the solvent centar if$ radius would be “outside”. Provided that
point density is high enough, a continuous setoadels will be generated, and any missing
voxels could, in principle, be interpolated froneske.

Results and Compression Ratios
Compression ratios on the order of 400-600 aree&ypT his, of course, leaves out any
possibility of real-time generation of additionalfaces; for that, the CUBE file is necessary.

But for general use — depicting molecular orbitalsl simple mapped surfaces — JVXL files
should suffice. Shown in Figure 3 are several caiapas.’

DOCUMENT HISTORY:

- original document 5/25/06
- figure 3 corrected; caption enhanced, referencddé@ 5/25/06

Figure 3. Top: electron density isosurface; middle: electatis potential isosurface; bottom:
electrostatic potential mapped onto the electrarsie isosurface. CUBE file (left, 3.7 Mb), and
JVXL file (right, 6 Kb top and middle; 7 Kb bottom)

References

! hitp://educ.gaussian.com/visual/Diff/Files/acroleins.cubd6.7Mb uncompressed).

2 hitp://svn.sourceforge.net/viewcvs.cgi/*checkoutidj/trunk/Jmol-datafiles/cube/benzene-homo.cul5§BKb
gzip compressed, 1.6Mb uncompressed).

http://www.exaflop.org/docs/marchcubégkast accessed 5/26/06).

* Clockwise from the top left (Jmol script after dtiag given in parentheses); see
http://www.stolaf.edu/people/hansonr/imol/test/pfoew.htm
http://www.stolaf.edu/people/hansonr/imol/test/pfoh3cl-density.cub.gésosurface 0.05 “”),
http://www.stolaf.edu/people/hansonr/jmol/test/pfoh3cl.jvxl (isosurface fileindex 1 *”),
http://www.stolaf.edu/people/hansonr/jmol/test/pfoh3cl.jvxl (isosurface fileindex 2 *),
http://www.stolaf.edu/people/hansonr/jmol/test/pfoh3cl-map.jvxi(isosurface “"),
http://www.stolaf.edu/people/hansonr/imol/test/pfoh3cl-density.cub.gz
(isosurface *” color http://www.stolaf.edu/people/hansonr/jmol/test/pfoh3cl-esp.cub.d}
http://www.stolaf.edu/people/hansonr/jmol/test/pfoh3cl-esp.cub.gésosurface 0.05)

