Reaction Mechanisms of Inorganic Compounds

C21J, 4 Lectures Mohammed Bakjr, Ofitce \#8

Introduction
Ligand substitution reactions

- Octahedral Complexes
- Square Planar

Racemization Reactions
Reference: Chapters 9
Jextbooks B. DougJas, D, H, McDanjel, \& J,
J. Alexander, Concepts \& Models of Inorganic Chemistry, 2nd edfition, wiley, New York

Some Chemistry of Transition Metals

Ligand Exchange

Photochemical

Coordination to metals

Redox Reactions Ligand Reactivity

Rearrangement of coordination Sphere

What are reaction mechanisms?

\lrcorner Detail step-by-step analysis of reaction pathway.
$\lrcorner i$ ie sequence of reactions involved in the conversion of reactants to products

- Rate Law
- 'I ntimate' Mechanism refers to details of the mechanism at the molecular level.

Reaction Profile

Consider the reaction:
$M+L=M L$

Collisions
of > Energy

Activated Complex
Transition State

Intermediate Activated Complex

ML
 Narrow for $-\Delta \mathbf{S}$

$\xrightarrow[\text { Reaction Coordinate }]{ }$

Microscopic Reversjibility

\lrcorner Microscopic reversibilitity: at equilibrium both forward and reverse reactions proceed at equal rates backward and forward and along the reaction coordinate.

Transition State Theory

Δ Rate $=k[L][M]$
$-k \alpha K^{\ddagger} \alpha \exp \left(-\Delta G^{\ddagger} / R T\right)$
$\lrcorner k \alpha \exp \left(\Delta S^{\ddagger} / R\right) \exp \left(-\Delta E_{\mathrm{act}} / R T\right)$
\lrcorner Fast reactions are favored by:
$\Delta \Delta \neq$ more positive.

- $\Delta E_{\text {act }}$ less positive.
\lrcorner Note since k is exponentially dependent on ΔS^{\ddagger} and $\Delta E_{\text {act }}$ Small changes in k are not significant in the interpretation of the rate law.
- Ligand Substitution reactions! are those in which the coordination sphere around the metal changes due exchange of one ligand (Jewis base) with another ligand.
- e.g.
- Octahedral

$$
M L_{6}+Y \nRightarrow M L_{5} Y+L
$$

$\left.\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+\mathrm{conc} \mathrm{HC}\right]=\left[\mathrm{CuCL}_{4}\right]^{2-}$ fast within seconds
$\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+$ conc. HC$] \neq \mathrm{NO}$ Reaction

- Square Planar

$$
M L_{4}+Y \neq M L_{3} Y+L
$$

Examples of Substitution Reactions

$$
\begin{array}{cc}
\mathrm{Cu}^{2+}+\mathrm{H}_{2} \mathrm{O} & \rightleftarrows \\
\text { Substitution reaction } & \begin{aligned}
& {\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+} } \\
&+\mathrm{NH}_{3} \text { it }-\mathrm{NH}_{3} \\
& 4 \mathrm{H}_{2} \mathrm{O}+\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}
\end{aligned}
\end{array}
$$

$$
\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}+\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \rightarrow\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}+\mathrm{NH}_{4}+
$$

$$
\mathrm{H}_{2} \mathrm{O}
$$

$$
\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+}
$$

$$
1+\mathrm{Cl}
$$

$$
\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{Cl})\right]^{+}
$$

Example

$\lrcorner\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}+\mathrm{H}_{2} \mathrm{O} \rightarrow\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{3+}$ Slow several days
\lrcorner Lability and inertness: Kinetic terms \& unrelated to thermodynamic stability of compound and they refer to how quickly a reaction system reaches equilijbrium.
I Inertness is kinetic stability

Examples

$$
\begin{aligned}
& M^{(n-y)-}+n C N \quad\left[M(C N)_{n}\right]^{y} \\
& K_{f}=\left[M(C N)_{n}\right]^{y /[M} /\left[M^{n-y}\right)[C N]^{n}
\end{aligned}
$$

Compound
$\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$
$\left[\mathrm{Hg}(\mathrm{CN})_{4}\right]^{2-}$
$\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$
$\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$
$\left[\mathrm{Pt}(\mathrm{CN})_{4}\right]^{2-}$
K_{f}
10^{30}
10^{42}
10^{44}
10^{37}
$\sim 10^{40}$

Exchange Rate
very fast
very fast
very fast
very fast
$\mathrm{t}_{1 / 2}=1 \mathrm{~min}$.
$\rightarrow\left[\mathrm{Hg}(\mathrm{CN})_{4}\right]^{2-}$ Thermodynamically stable but kinetically labile, the same for $\left[\mathrm{N}(\mathrm{CN})_{4}\right]^{2-}$
i.e. in solutions ligand exchange is fast but always with CN:

Thermodynamics versus Kinetics

Thermodynamics \rightarrow Stability (stable/unstable) $\rightarrow K_{\mathrm{f}}$ Formation Constant

- Kinetics \rightarrow lability and inertness \rightarrow rate of replacement of ligands (bases)

Ligand Substitution Reactions in Octahedral Compounds

\lrcorner Kinetics of $\mathrm{H}_{2} \mathrm{O}$ exchange

$$
\mathrm{L}_{n} \mathrm{M}\left(\mathrm{H}_{2} \mathrm{O}\right)+\mathrm{H}_{2} \mathrm{O}^{*}=\mathrm{L}_{n} \mathrm{M}\left(\mathrm{H}_{2} \mathrm{O} *\right)+\mathrm{H}_{2} \mathrm{O}
$$

(see Figure 1)

Kinetics of Water Exchange

Exchange rate for metal aqua complexes
Figure 1

Langford \& Gray Classes for Water

Exchange

Class I Very fast (dififiusion control), $k>10^{8} \mathrm{sec}^{-1}$. The ions in this class are those of alkalli metals and alkaline earths (except for $\mathrm{Be}^{2+} \& \mathrm{Mg}^{2+}$), Group IIB (except for Zn^{2+}), Cr^{2+} and Cu^{2+}.
\lrcorner Class II Exchange-rate constants are between $10^{4}-10^{8} \mathrm{sec}^{-1}$. The divalent first row transition metal ions (except for $\mathrm{V}^{2+}, \mathrm{Cr}^{2+}$ \& Cu^{2+}) as well as Mg^{2+} and the trivalent lanthanide ions.
Class III Exchange-rate constants are between 1 and $10^{4} \mathrm{sec}$ 1. This class includes $\mathrm{Be} \mathrm{e}^{2+}, \mathrm{V}^{2+}, \mathrm{A} \mathrm{A}^{3+}, \mathrm{Ga}{ }^{3+}$ and several trivalent first-row transition metal ions.
\perp Class IV Exchange rate constants between 10^{-6} to $10^{-1} \mathrm{sec}^{-1}$. Member of the set are $\mathrm{Cr}^{3+}, \mathrm{Co}^{3+}$, Rh^{3+}, Ir^{3+} and Pt^{2+}. Inert.

Factors that affect water exchange substitution reactions

\lrcorner Ionic potential $=q / r$; charge $\&$ size of metal ions
\lrcorner Ions with high jonic potential \rightarrow slow reactions suggesting that the main contribution to the activation energy is the breaking of bond to the leaving group.
\lrcorner d-electronic configuration
$\lrcorner \rightarrow$ metal ions in strong LFSE \rightarrow slow substitution
O_{h}

$$
\begin{array}{ccc}
\frac{d x^{2}-y^{2}}{} \frac{d z^{2}}{6 D q} & \text { eg } \\
- & \frac{d_{x y}}{d_{x z}} & \frac{d_{y z}}{d_{2 z}}
\end{array}
$$

Spectroelectrochemical Series

$\mathrm{CN}>$ phen $\sim \mathrm{NO}_{2}>$ en $>\mathrm{NH}_{3} \sim \mathrm{py}>\mathrm{H}_{2} \mathrm{O}>\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}>\mathrm{OH}>\mathrm{F}>\mathrm{S}^{2-}$ $>\mathrm{CJ}^{\mathrm{J}}>\mathrm{B}^{2}>\mathrm{J}^{-}$

In strong field metal jons in $\mathrm{d}^{3}, \mathrm{~d}^{4}, \mathrm{dl}^{5}$, E $_{2} \mathrm{cl}^{5}$ are inert Je, HIGH LFSE
$\mathrm{O}_{\mathrm{h}} \rightarrow$ high spin dis such as Nill
\& low spin di8 such as Rh(I), Ir(I), Ni(II), Pd(II), Pt(III) \&
Square planar Au(III) are labil.
React faster than $d^{6} \& d^{3}$
For $\mathrm{Cu}^{2+} \& \mathrm{Cr}^{2+}$ the fast exchange is due to Jahn-Teller distortion in the ground state which makes the axial bonds longer than the equatorial bonds.

Mechanism of Ligand Substitution in O_{h} Compounds

$$
\begin{aligned}
\mathrm{ML}_{5} X+Y & \rightarrow \mathrm{ML}_{5} Y+X \\
\text { Where } & X \text { is leaving group } \\
& Y \text { is entering group }
\end{aligned}
$$

Consider the following mechanism
Wide $\Delta S+$
$\mathrm{ML}_{5} \mathrm{X} \stackrel{\stackrel{\rightharpoonup}{\mathrm{k}_{1}}}{\stackrel{\rightharpoonup}{2}}$
$\left[M L_{5}\right]+Y \xrightarrow{\mathrm{k}_{2}} \quad \mathrm{ML}_{5} \mathrm{Y}$
Dissociative pathway-D-type
 Key: $\mathrm{M}-\mathrm{X}$ bond breakage, $\left[\mathrm{ML}_{5}\right]$ is intermediate

Factors that affect the Strength of $M-X$ Bond

$\mathrm{M}^{\text {T+}}$ X $^{\text {os- Electrostatic }}$

Charge on metal Center-increase positive charge, $M-X$ bond strengthen

- Size of metal center-increase size of metal center, $M-X$ bond weaken
\lrcorner Charge of leaving group, increase negative charge on X, $M-X$ bond strengthen.
\lrcorner Size of leaving ligand, increase size of leaving group, MX bond weaken
\lrcorner Charge on other ligands (spectator), increase negative on other ligands, $M-X$ bond weaken
\lrcorner Size of spectator ligands, increase size of other ligands, $\mathrm{M}-\mathrm{X}$ bond weaken

Rate Law for Dissociative Mechanism

Rate $=d\left[\left[L_{5} M Y\right] / d t=k_{2}\left[L_{5} M\right][Y]\right.$
Apply the steady-state approximation to $L_{5} M$
$\mathrm{d}\left[\left[L_{5} M\right] / \mathrm{dt}=0=\mathrm{k}_{1}\left[L_{5} M \mathrm{M}\right]-\mathrm{k}_{1}\left[L_{5} M\right][\mathrm{X}]-\right.$ $k_{2}\left[L_{5} M\right][Y]$
$\left.\left.\therefore\left[L_{5} M\right]\right]=k_{1}\left[L_{5} M X\right]\right]\left(k_{1}[X]+k_{2}[Y]\right)$
\& Rate $=\left(k_{1} k_{2}\left[L_{5} M X\right][Y]\right) /\left(k_{1}[X]+k_{2}[Y]\right)$ Bjacoleculas

Dissociative Mechanism, D-type

If $k 2[y] \gg k-1[X]$ i.e. pusedo $1^{\text {st }}$ order
Rate $=k 1[$ LnMX] unimolecular
e.g. aquation and anation of inert do Co^{111} compounds of the type $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \times\right]^{2+}$.

For this mechanism [LLM] is an intermediate that has an appreciable lifetime and can be detected.

Note true examples of D-type are not common.

Aquation or acid hydrolysis

Aquation or acid hydrolysis

$$
L_{5} M X^{n+}+\mathrm{H}_{2} \mathrm{O} \rightarrow\left[L_{5} M\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{n+1}+X
$$

\lrcorner Anation

$$
\left[\mathrm{L}_{5} \mathrm{M}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{\mathrm{n}+1}+\mathrm{Y}^{\prime} \rightarrow \mathrm{L}_{5} \mathrm{M} Y^{n+}+\mathrm{H}_{2} \mathrm{O}
$$

$$
\begin{array}{ccc}
\left.\mathrm{L}_{5} \mathrm{M}\right]-\mathrm{X} \\
\rightarrow
\end{array} \mathrm{~L}_{5} \mathrm{M}\left[-\mathrm{X} \underset{+\mathrm{Y}}{\rightarrow} \mathrm{~L}_{5} \mathrm{M}[\ldots . \mathrm{X}\right.
$$

The rate is insensitive to the identity of Y, Implication is that both entering and leaving groups are weakly bound in the transition state. This is known as Dissociative interchange (I_{d}).

Plausible Mechanism for I_{d} Dissociative

 Interchange$L_{5} M X+Y \stackrel{K}{\rightleftarrows}\left(L_{5} M X, Y\right)$
$\left(\mathrm{L}_{5} \mathrm{MXX}, \mathrm{Y}\right) \xrightarrow{\mathrm{k}_{2}}\left(\mathrm{~L}_{5} \mathrm{MY}, \mathrm{X}\right)$
fast
$\left(\mathrm{L}_{5} \mathrm{MY}, \mathrm{X}\right) \rightarrow \mathrm{L}_{5} \mathrm{MMY}+\mathrm{X}$

Narrow, $\Delta \mathrm{S}$ -
For short lived
Intermediate, or TS
\lrcorner The magnitude of \mathbf{K} depends on the ionic charge being larger when Y and the metal complex are of opposite charge.
The likelihood of Y present in the outersphere depends on [Y], as indicated in step 1.

Rate Law for Dissociative I nterchange

The experimental parameter accessible here is the initial concentration of the reactant complex $\left[L_{s} M X X\right]_{0}$ which in solution containing Y exists partly in the form of outersphere complex
$\lrcorner\left[L_{5} M X\right]_{0}=\left[L_{5} M X\right]+\left[L_{5} M X, Y\right]$
$\mathrm{K}=\mathrm{k}_{1} / \mathrm{k}_{2}=\left[\mathrm{L}_{5} \mathrm{MX}, \mathrm{Y}\right] /[\mathrm{Y}]\left[\mathrm{L}_{5} \mathrm{MX}\right]$
$\therefore\left[L_{5} \mathbf{M X}, \mathrm{Y}\right]=\mathrm{K}[\mathrm{Y}]\left[\mathrm{L}_{5} \mathrm{MX}\right]$
$\&\left[L_{5} M X\right]_{0}=\left[L_{5} M X\right]+\mathbf{K}[Y]\left[L_{5} M X\right]$
Hence
$\left[L_{5} \mathbf{M X}\right]=\left[L_{5} \mathbf{M X}\right]_{0} /(1+\mathbf{K}[Y])$
Rate $=-\mathrm{dIL} \mathrm{L}_{5} \mathrm{MX} / \mathrm{dtt}=\mathrm{k}_{2}\left[\mathrm{~L}_{5} \mathrm{MX}, \mathrm{Y}\right]$
\lrcorner Rate $=\mathbf{k}_{2} \mathrm{~K}\left[\mathrm{~L}_{5} \mathbf{M X X}\right]_{0}[\mathbf{Y}] /(1+\mathrm{K}[\mathbf{Y}])$

Associative (a) Mechanism

$\lrcorner L_{5} M X+Y \underset{k_{1}}{k_{1}} L_{5} M X Y$
$\lrcorner L_{5} M X Y \xrightarrow{k_{1}} L_{5} M Y+X$

- Rate $=k_{1}\left[L_{5} M X\right][Y] /\left(k_{1}+k_{2}\right)$
\lrcorner No example for O_{h}

Associative Interchange (I_{a}) Mechanism

$$
\begin{aligned}
& \mathrm{L}_{5} \mathrm{M}-\mathrm{X} \underset{\Delta}{\rightarrow} \mathrm{~L}_{5} \mathrm{M}-\mathrm{X} \underset{+\mathrm{r}}{\rightarrow} \mathrm{~L}_{5} \mathrm{M} \ldots \ldots \mathrm{X} \\
& \text { Activation Energy } \\
& \text { Vibrational Energy }
\end{aligned}
$$

Key: $\mathrm{M}-\mathrm{Y}$ bond starts to form before $\mathrm{M}-\mathrm{X}$ bond
starts to cleave.
The entering group (Y) is strongly bound, and rate is sensitive to Y . Implication is that the entering group and leaving group are strongly bound in the transition state. This is known as Associative interchange. (I_{a})

Summary

I norganic Reaction Mechanisms

d
a
intimate

d
I_{d}

I
SN_{1} (lim) SN1
SN_{2}
SN_{2} (lim) ${ }^{*}$
Stoichiometric
$\mathrm{SN}_{1} \& \mathrm{SN}_{2}$ are not good models for inorganic reaction mechanisms.*

Summary

$$
\begin{aligned}
& L_{5} M X+Y \neq L_{5} M Y+X \\
& \text { Rate }=a\left[L_{5} M X\right][Y] /(1+b[Y])
\end{aligned}
$$

Limiting conditions:

1. $b[Y] \gg 1$; \therefore the reaction should be first order.
2. $\mathrm{b}[Y] \ll 1$; \therefore the reaction should be second order.
3. $b[Y]=1 \therefore$ the reaction should be of mixed order.

A always second order as long as the final step is not reversjble.

Substitution inert ions

$\lrcorner \mathrm{CO}^{3+}, \mathrm{Cr}^{3+}, \mathrm{Rh}^{3+}, \mathrm{Ir}^{3+}, \mathrm{Pt}^{4+} \& \mathrm{Ni}^{2+}$

I ntimate Mechanisms

Nature of leaving \& entering groups

$$
L_{5} M-X \Rightarrow L_{5} M+X
$$

For dissociative mechanism rate is dependent the leaving group
i.e. $M-X$ bond strength
e- donor σ-donor like $\mathrm{NH}_{3}, \mathrm{H}$,
π-donor $\rightarrow \sigma+$ filled π-orbital

$$
\text { e.g. } \mathrm{Br}, \mathrm{O}^{-}, \mathrm{C}_{\mathrm{p}}^{-}, \mathrm{RO}^{-} \cdot \mathrm{RN}^{2}
$$

\lrcorner e-acceptor \rightarrow o-donor + empty π^{*} orbitals e.g. CO

Ligands

$\lrcorner \sigma$-donors
$-\mathrm{H}>\mathrm{PR}_{3}>\mathrm{SCN}>\mathrm{I}^{-}>\mathrm{CH}_{3}{ }^{-}, \mathrm{CO}>\mathrm{CN}>\mathrm{Br}^{2}>\mathrm{Cl}$ $>\mathrm{NH}_{3}>\mathrm{OH}$
$\lrcorner \pi$-acceptors -
$-\mathrm{CO} \sim \mathrm{C}_{2} \mathrm{H}_{4}>\mathrm{CN}>\mathrm{NO}_{2}>\mathrm{NCS}>\mathrm{I}^{-}>\mathrm{Br}$

Leaving group order for O_{h} compounds

$\mathrm{HCO}_{3} \gg \mathrm{NO}_{3}>\mathrm{J}^{-} \sim \mathrm{H}_{2} \mathrm{O} \sim \mathrm{Br}>\mathrm{CJ} \sim$ $\mathrm{SO}_{4}{ }^{2-}>\mathrm{SCNH}^{\mathrm{F}}>\mathrm{CH}_{3} \mathrm{COO}^{-}>\mathrm{NCS}^{-}$
$\rightarrow \mathrm{NO}_{2}>\mathrm{NH}_{3}>\mathrm{OH}>\mathrm{CN}^{-}$

Size of the Coordination Sphere \& Metal ION

Large Coordination sphere favors associative mechanism
Small coordination sphere favors dissociative dtype pathway,

- e.g.

$$
\begin{aligned}
& 1^{\text {st }} \rightarrow \text { Oh favors D-type } \\
& 2^{\text {nd }} \rightarrow \text { Oh may be A-type } \\
& 3^{\text {rd }} \rightarrow \text { Oh favors A-type }
\end{aligned}
$$

Compare water exchange in $\left[\mathrm{Rh}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ \&

$$
\left[\operatorname{lr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+} \quad 1: 3
$$

רן	$\begin{gathered} \text { ON } \\ \text { 표 } \end{gathered}$	PII	$\begin{gathered} \mathrm{LH}_{\mathbf{1}} \\ 0 \\ \hline \end{gathered}$	53 통	$\begin{gathered} 10 \\ 3 \end{gathered}$	$\begin{gathered} \text { 4, } \\ \hline \end{gathered}$	$\begin{array}{r} 109 \\ \hline 0 \\ \hline \end{array}$	$$		dN	$\mathbf{n}_{\mathrm{z}=1}$	$\begin{gathered} \text { Ed } \\ \underline{t E} \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{L I} \\ \hline \end{gathered}$
רח	qA a	$\begin{array}{r} 41 \\ \hline 8 \end{array}$	Iヨ	OH	30	$\begin{array}{r} \mathbf{4} 1 \\ 39 \end{array}$	$\underset{p 9}{\mathrm{Pq}}$	$\begin{array}{r} 63 \\ \hline \end{array}$	$\begin{array}{r} 145 \\ 7 \end{array}$	$\underset{1-1}{\mathbf{L u}_{\mathbf{d}}}$	PN		0

$$
\begin{gathered}
\operatorname{senes} \\
\text { ep!n? }+ \\
\text { seues } \\
\text { ep!eque7 }
\end{gathered}
$$

Coordination Sphere

Coordinatively saturated Coordinatively unsaturated Favors D- type

Mechanism

1. Leaving group
e.g.
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{X}\right]^{2+}+\mathrm{H}_{2} \mathrm{O} \rightarrow\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{3+}$
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{H}_{2} \mathrm{O}\right]^{3+}+\mathrm{Y}^{-} \rightarrow\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{Y})\right]^{2+}\right.$
\lrcorner Rate is dependent on leaving group and is independent on entering group.
\lrcorner i.e. Co-X bond breaking is the rate determining step.
\square Evidence?

Aquation or acid hydrolysis

Aquation or acid hydrolysis

$$
\mathrm{L}_{5} \mathrm{M} \mathrm{X}^{\mathrm{n}+}+\mathrm{H}_{2} \mathrm{O} \longrightarrow\left[\mathrm{~L}_{5} \mathrm{M}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{\mathrm{n}+1}+\mathrm{X}^{-}
$$

- Anation

$$
\left[\mathrm{L}_{5} \mathrm{M}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{\mathrm{n+1}}+\mathrm{Y}^{-} \rightarrow \mathrm{L}_{5} \mathrm{MY}^{\mathrm{n+}}+\mathrm{H}_{2} \mathrm{O}
$$

Rate constants for acid aquation of some O_{h} compounds of $\mathrm{Co}(\mathrm{III})$ of the type $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{X})\right]^{2+}$ at 25 C

Compound	$k\left(\sec ^{-1}\right)$
$\left[\mathrm{CO}\left(\mathrm{NH}_{3}\right)^{5}\left(\mathrm{OP}\left(\mathrm{OCH}_{3}\right)_{3}\right)\right]^{3+}$	2.5×10^{-4}
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{NO}_{3}\right)\right]^{2+}$	2.7×10^{-5}
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{l})\right]^{2+}$	8.3×10^{-6}
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{3+}$	5.8×10^{-6}
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{Cl})\right]^{2+}$	1.7×10^{-6}
$\left[\mathrm{CO}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{SO}_{4}\right)\right]^{+}$	1.2×10^{-6}
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{~F})\right]^{2+}$	8.6×10^{-8}
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{~N}_{3}\right)\right]^{2+}$	2.1×10^{-9}
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{NCS})\right]^{2+}$	5.0×10^{-10}

Limiting Rate constants for anation by Y^{n-} and water exchange $\left(\mathrm{k}_{\mathrm{e}}\right)$ at $45 \mathrm{C}\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{3+}$

Y^{n-}	$k\left(\sec ^{-1}\right)$	$\mathrm{k} / \mathrm{k}_{\mathrm{e}}$	Rate is insensitive to entering group
$\mathrm{H}_{2} \mathrm{O}$	100×10^{-6}		
N_{3}	100×10^{-6}	1.0	e.evivation
$\mathrm{SO}_{4}{ }^{2}$	24×10^{-6}	0.24	
CF	21×10^{-6}	0.21	bstitutio
NCS	16×10^{-6}	0.16	Were no difrects
$\mathrm{H}_{2} \mathrm{O}$	5.8×10^{-6}		was Observed.
$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$	7.7×10^{-7}	0.13	

Example

$\left[R u\left(\right.\right.$ edta) $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right]+\mathrm{L} \rightarrow[\operatorname{Ru}($ edta) L$]$
$\left[R u(\right.$ edta) L$]+\mathrm{H}_{2} \mathrm{O} \rightarrow\left[\right.$ Ru(edta) $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right]+\mathrm{L}$
Rate constants for sulostitution by $L\left(k_{1}\right)$ of [Ru(edta) ($\left.\mathrm{H}_{2} \mathrm{O}\right)$] and for aquation $\mathrm{K}_{\text {aq }}$ of [Ru(edta) $\left(\mathrm{H}_{2} \mathrm{O}\right)$] at $25^{\circ} \mathrm{C}$
$k_{L}\left(M^{-1} \sec ^{-1}\right) \quad k_{a q}\left(\sec ^{-1}\right)$
Pyridine
6.3×10^{3}
0.061

NCS
2.7×10^{2}
0.5
$\mathrm{CH}_{3} \mathrm{CN}$
3.0×10
3.2

Ligands

pyridine
edta

Steric Effect of I nert Ligands

Crowding around the metal ion will retard the rate of reactions that occur by an a-type mechanism and to speed up those occurring via a d-type mechanism

Steric Effect

Electronic Effect of Inert Ligands

π-donation by a cis ligand into the p component of an empty d2sp3 hybrid.
π-otbital of trans ligand is \perp to d2sp3 hybrid.

Rearrangement

π-donation from trans Ligand can occur upon rearrangement to Trogonal bipyramidal

Activation Parameters

性 Enthalpy of activation is a measure of the height of the energy barrier, particularly bond strengths within and between reactants, which must be overcome to attiain the transition state; If $\Delta H^{\#}<D_{(M-X)}$, then bond is broken during activation wher $D=$ dissociation energy. Δ St relates to probability of reaction-it includes contributions firom steric bulkand orientation of reactants
$\Delta S^{\ddagger} \sim 0$ for unimolecular reactions + for dissociative
The more negative the value of
ΔS^{\ddagger} the lower the reaction rate.

Activation Parameters

$\lrcorner \mathrm{k} \alpha \Delta G^{0}$; more thermodynamically favored reactions proceed faster
\lrcorner Hamond's postulate: Two consecutively occurring states that have similar energy along a reaction coordinate will involve only small structural reorganization.

Slope $=1$ for dissociative; i.e. TS or intermedlate falls late in the reaction coordinate; ije product-like
SJope $\sim 0,5$ for associative, IS or [x] falls early in the reaction coordinatej i.e. reactants-like.
\square Volume of activation + dissociative \& - associative

Activation Parameters, The Eyring Equation

$\lrcorner k=R T /$ Nhe $e^{\Delta S t / R} e^{-\Delta H \# / R T}$

$K_{\text {eff }}=e^{A S \neq / R} e^{-A H \# / R T}$
Where N is Avogadro's Numbern $=6.02 \times 10^{233} \mathrm{~mol}^{-1}$ $\mathrm{H}=$ Plank's constant $=6,6 \times 10^{-34} \mathrm{~J} \mathrm{~S}$.

Ligand Substitution Reactions on

 Square Planar Complexesd^{8} metal ions such as [AUIII, NJII, PdII, Pitl Rh and I r^{\prime} I usually form four coordinate square planar compounds, especially with strong ligands.

$M L_{3} X+Y \rightarrow M L_{3} Y+X$
Rate $=k_{1}\left[\mathrm{MIL}_{3} \mathrm{X}\right]+\mathrm{k}_{2}[\mathbf{Y}]\left[\mathrm{MIL}_{3} \mathrm{X}\right]$

Mechanism for Sq. Substitution

\lrcorner Trigonal bipyramidal may be an intermediate for A type of TS for I_{a}
-5-coordinate species may be isolated as in $\left[\mathrm{Ni}(\mathrm{CN})_{5}\right]^{3-}$ and can be isolated as salt of $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$

- Reactivity order $\mathrm{Ni}^{\prime \prime}>$ Pd ${ }^{\prime \prime}>$ Pt ${ }^{\prime \prime}$
\lrcorner Nucleophilicity order for square planar compounds:

$$
\mathrm{CN} \sim \mathrm{CO}>\mathrm{PR}_{3}>\mathrm{H}^{-}>\mathrm{I}^{-}>\mathrm{Cl}>\mathrm{H}_{2} \mathrm{O}
$$

\lrcorner Leaving group order

$$
\mathrm{H}_{2} \mathrm{O}>\mathrm{Cl}^{-}>\mathrm{I}^{-}>\mathrm{H}^{-}>\mathrm{PR}_{3}>\mathrm{CO} \sim \mathrm{CN}
$$

Rate Law

Rate $=\left(K_{1}+K_{2}[Y]\right)\left[M L_{3} X\right]$
\lrcorner Indicate two parallel reaction paths.
\lrcorner In the presence of a large excess of the entering ligand [Y] remains constant throughout the reaction
\lrcorner Rate $=-\mathrm{d}\left[\left[\mathrm{ML}_{3} \mathrm{X}\right] / \mathrm{dt}=\mathrm{K}_{\text {obs }}\left[\mathrm{ML}_{3} \mathrm{X}\right]\right.$ where $\mathrm{K}_{\text {obs }}=\mathrm{K}_{1}$ $+k_{2}[Y]$
\lrcorner A plot of $K_{\text {obs, }}$ versus [Y],

Straight line with $k_{1}=$ intercept and k_{2} is the nucleophilicity strength of Y.

Rates of reaction of

Rate of reaction of trans-[Pt(py) $)_{2} \mathrm{Cl}_{2}$ in methanol @ 30 C as a function of the concentration of entering ligand.

Rate Law

\lrcorner Note all ligands have the same intercept, k_{1}, implying that they go through the same species.
$\lrcorner k_{2}$ is different from one ligand to another.

- Since the only species present in solution in addition to the ligands is the solvent molecules this implies that the solvent is involved in the first term and the second term in the ligand participation

Summary

\lrcorner Two pathways are involved:
\lrcorner (1) first order in complex (k1), does not involve Y in rate determining step. This mechanistic pathway is solvent mediated.
\lrcorner (2) first order in complex and $Y\left(k_{2}\right), Y$ involved in rate determining step

Mechanism

Pathway 2

$$
\begin{aligned}
& \text { L }{ }_{2} \text {, slow } \\
& \text { L } \\
& \mathrm{L}-\mathrm{Pt}-\mathrm{X}+\mathrm{Y} \\
& \rightleftarrows \mathrm{~L}-\mathrm{Pt} \\
& \text { L } \\
& L=P t-Y
\end{aligned}
$$

Summary

\perp Both reactions proceed via an associative process (A), involving a trigonal bipyramid transition state, Is there any chemical justification for this transition state?
((i) Many five coordinate transition metal complexes are known, e. g., Fe(CO) ${ }_{5}$ $\left[\mathrm{CoL}_{2}(\mathrm{CO})_{3}\right]+,\left[\mathrm{Ni}(\mathrm{CN})_{5}\right]^{3-}$
\lrcorner (ii) $M L_{3} X$ complexes are sterically and electronically unsaturated and have space for Y to coordinate.

Evidence

Rate law is consistent with associative mechanism
Charge on the metal center-has no effect on the rate of reaction
Steric effect-significant increase in rate was observed for less hindered ligands, trans- is faster than cis
$\mathrm{C}_{6} \mathrm{H}_{5}>2 \mathrm{Me}-\mathrm{C}_{6} \mathrm{H}_{4}>2,4,6-\mathrm{Me}_{3}-\mathrm{C}_{6} \mathrm{H}_{2}$
Note trans>cis
For the substitution reaction
$\operatorname{Pt}\left(\mathrm{PEt}_{3}\right)_{2} \mathrm{RCl}+\mathrm{Y} \rightarrow \mathrm{Pt}\left(\mathrm{PEt}_{3}\right)_{2} \mathrm{RY}+\mathrm{Cl}-$

Rate law

Schematic representation of parallel reactions

Effect of Entering \& Leaving Ligands on Rate

- Rate constants for ligand displacement in some square planar Pt(IJ) compounds
\lrcorner Trans-[Pt(py) $)_{2} \mathrm{Cl}_{2}+Y \rightarrow$ trans $\left[\mathrm{Pt}(\mathrm{py})_{2} \mathrm{YCl}\right]+\mathrm{Cl}-$

Effect of Entering \& Leaving Ligands on Rate

\lrcorner Rate constants for ligand displacement in some square planar Pt(II) compounds
\lrcorner trans-[Pt(dien)X] ${ }^{+}+p y \rightarrow$ trans $[\operatorname{Pt}(\text { dien })(p y)]^{2+}+X$

- X
$\mathrm{k}_{\text {obs }}\left(\mathrm{M}^{-1} \mathrm{sec}^{-1}\right)$
CN
1.7×10^{-8}
\lrcorner SCN-
\lrcorner [
$\lrcorner \mathrm{Cl}$
3.0×10^{-7}
\lrcorner H20
- NO3-
1.0×10^{-5}
3.5×10^{-5}
1.9×10^{-3}
very fast

Factors affecting rate of substitution 1. Nucleophillicity
$-\mathrm{PtCl}_{2} \mathrm{Py}_{2}+\mathrm{Y} \rightarrow \mathrm{PtClYPy}_{2}+\mathrm{Cl}$
\lrcorner Standard Reaction, and methanol as a standard nucleophile, a base with unshared pair of electrons such as $\mathrm{NH}_{3}, \mathrm{I}, \mathrm{Cl}, \mathrm{R}, \mathrm{PR}_{3}$
$\lrcorner n_{\mathrm{pt}}=\log _{2}(Y) / \mathrm{k}_{1}\left(\mathrm{CH}_{3} \mathrm{OH}\right)=\log _{2}(Y)-$ $\log _{1}\left(\mathrm{CH}_{3} \mathrm{OH}\right)$
\lrcorner Factors Affect Nucleophililitity
Basicity

- Oxidation potential of Y

Nucleophillicity order

$\Delta \mathrm{S}_{\mathrm{pt}}=\log \mathrm{K}_{2}(\mathrm{Y}) / \mathrm{k}_{2}($ solvent $)$
$-\mathrm{S}=$ nucleophilicity discriminating factor
$\lrcorner \mathrm{J}>\mathrm{Br}^{-}>\mathrm{Cl} \gg \mathrm{F}^{-}$
$\perp \mathrm{PR}_{3}>A s R_{3}>S b R_{3}>\mathrm{NR}_{3}$
Sulphur $>$ Oxygen
\lrcorner Soft bases are better nucleophiles for Ptll as it is a soft acid

Trans - ligands \& trans effect

Whe trans effect is defined as the effiect of a coordinated ligand upon the rate of substitution of ligands opposite to it."
\lrcorner For Pt II compounds the order of trans effect $\lrcorner \mathrm{H}_{2} \mathrm{O} \sim \mathrm{OH} \sim \mathrm{NH}_{3} \sim \mathrm{NR}_{3}<\mathrm{Cl} \sim \mathrm{Br}<\mathrm{SCN}$ $\sim 1 \sim \mathrm{NO}_{2} \sim \mathrm{C}_{6} \mathrm{H}_{5}<\mathrm{CH}_{3}<\mathrm{PR} 3 \sim \mathrm{AsR}_{3} \sim$ $\mathrm{H}^{-}<$olefins $\sim \mathrm{CO} \sim \mathrm{CN}$

Trans effect in synthesis

Try

Synthesis of cis and trans-isomers of $\left[\mathrm{PtCl}_{2}\left(\mathrm{NH}_{3}\right)\left(\mathrm{PPh}_{3}\right)\right]$ given the reactants $\mathrm{PPh}_{3}, \mathrm{NH}_{3}$ and $\left[\mathrm{PtC}_{4}\right]^{2-}$

Origin of the trans-effect-

\lrcorner Electronic (Molecular Orbitals)
$\Delta \sigma$-donor ligands such as H, R^{-}, increase electron density around the metal.

- π-acceptor ligands such as CO, CN-, PR_{3}, pback bonding weaken the bond trans to it.

Trans-efffect

T.S. Tpy σ-donor π-acceptor

Steric Effect of I nert Ligands

- Steric effect is unclear

Trans-Pt $\left.\left(\mathrm{PEt}_{3}\right)_{2} \mathrm{RCl}\right]+\mathrm{y} \rightarrow$ trans-[$\left[\mathrm{Pt}\left(\mathrm{PEt}_{3}\right)_{2} \mathrm{RY}\right]+\mathrm{Cl}-$

$\lrcorner \mathrm{R}$	Solvent	$\mathrm{Y}=\mathrm{CN}$	$\mathrm{Y}=\mathrm{SC}(\mathrm{NH} 2) 2$
$\lrcorner \mathrm{C}_{6} \mathrm{H}_{5}$	methanol	3.61	3.30
$\lrcorner \mathrm{C}_{6} \mathrm{H}_{5}$	DMSO	very fast	0.532
$\lrcorner \mathrm{O}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}$	methanol	0.234	0.652
$\lrcorner \mathrm{o}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}$	dmso	3.54	0.106
$\lrcorner 2,6-\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CH}_{3}\right)_{2}$ methanol	8.49×10^{-3}	4.94×10^{-2}	
$\lrcorner 2,6-\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CH}_{3}\right)_{2}$ dmso	3.17×10^{-2}	9.52×10^{-3}	

Steric Effect

Steric effect is significant, hints to dissociative pathway,
\lrcorner i.e. although associative pathway is feasible but dissociative pathway may become operative in the presence of bulky Ligands.

Conclusion

\lrcorner (i) 1 st order in substrate and nucleophile,
\lrcorner (ii) k_{1} (solvent) and k_{2} (entering ligand)- solvent is important
\lrcorner A number of factors determine reactivity
\lrcorner (i) Nucleophilicity - different from basicity
\lrcorner (ii) cis and trans effects - Kinetic effects, not the same as trans influence - thermodynamic effect
\lrcorner (iii) Leaving group effect
\lrcorner (iv) Rate depends on the metal M

- Predictive synthesis.

Redox Reactions

- Electron-transfer
$A+B^{-} \rightarrow A^{-}+B$
\lrcorner 1. Inner sphere
\lrcorner Transition state involve interpenetrationg coordination sphere or bridging ligands or interaction between reactants which is common to both coordination sphere \& serves as channel through which electron flows.

Taube \& Meyer $\mathrm{Cr}^{2+} \& \mathrm{Cr}^{3+}$
$\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+}$ (Labile) $\&\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right]^{2+}$ (innert)
$\mathrm{CO}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+}+\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{CI}\right]^{2+} \xrightarrow{\mathrm{H}^{+}}\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+\left[\mathrm{ClCr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+$
$5 \mathrm{NH}_{4}$

I nner sphere

$-\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right]^{2+}+\mathrm{Cr}^{2+} \rightleftharpoons\left[\mathrm{CO}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{ClCr}\right]^{4+}$
$\lrcorner\left[\mathrm{CO}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{ClCr}\right]^{4++} \rightarrow \mathrm{CrCl}^{2+}+\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\right]^{2+}$
$-\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\right]^{2+}+5 \mathrm{H}^{+} \neq \mathrm{CO}^{2+}+5 \mathrm{NH}_{4}^{+}$
$\lrcorner \mathrm{Cr}^{3+}$ inert to substitution with
$\lrcorner \mathrm{K}=2.9 \times 10-8 \mathrm{M}^{-1} \mathrm{sec}^{-1}$ for CJ anation of Cr^{3+}
\lrcorner For the reduction $k=6 \times 10^{5} \mathrm{M}^{-1}$ sec $^{-1}$
$\lrcorner \therefore$ Cr-Cl could not have been formed from substitution of free CJ

Outer-sphere Electron Transfer

\lrcorner The interaction between the oxidant and reductant at the time of electron transfer is small, therefore the coordination shells are intact; i.e. through space, diffiusion control

Example Outer-sphere Electron Transfer

$\lrcorner\left[F e\left(\mathrm{me}_{2} \text { bipy }\right)_{3}\right]^{2+}+\left[\mathrm{Fe}(\text { bipy })_{3}\right]^{3+} \approx$ $\left[F e\left(\mathrm{me}_{2} \text { bipy }\right)_{3}\right]^{3+}+\left[\operatorname{Fe}(\text { bipy })_{3}\right]^{2+}$

- Rate $\left.\left.=\mathrm{k}\left[\mathrm{Fe}\left(\mathrm{me}_{2} \text { bipy }\right)_{3}\right]^{]^{++}[\mathrm{Fe}(\text { bipy }}\right)_{3}\right]^{3+}$
$\lrcorner=10^{3} \mathrm{M}^{-1} \sec ^{-1}$

Rate of substitution is $\sim 10^{4} \mathrm{M}^{-1} \mathrm{sec}^{-1}$

- For outer sphere the redox rate must be faster than the substitution rate,

